On singular values of data matrices with general independent columns

نویسندگان

چکیده

In this paper, we analyse singular values of a large $p\times n$ data matrix $\mathbf{X}_n= (\mathbf{x}_{n1},\ldots,\mathbf{x}_{nn})$ where the column $\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such matrices common in high-dimensional statistics. Under key assumption that covariance $\mathbf{\Sigma}_{nj}=\text{Cov}(\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence their spectra, establish limiting distribution for $\mathbf{X}_n$ when both dimension $p$ $n$ grow to infinity comparable magnitude. The model goes beyond includes many existing works on types sample matrices, including weighted matrix, Gram linear times series models. Furthermore, develop two applications our general approach. First, obtain existence uniqueness new spectral realized multi-dimensional diffusion process anisotropic time-varying co-volatility processes. Secondly, derive recent matrix-valued auto-regressive model. Finally, generalized finite mixture model, is obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

On singular values of matrices with independent rows

We present deviation inequalities of random operators of the form 1 N ∑N i=1 Xi ⊗ Xi from the average operator E(X ⊗ X), where Xi are independent random vectors distributed as X, which is a random vector in R or in `2. We use these inequalities to estimate the singular values of random matrices with independent rows (without assuming that the entries are independent).

متن کامل

On the singular values of random matrices

We present an approach that allows one to bound the largest and smallest singular values of an N × n random matrix with iid rows, distributed according to a measure on R that is supported in a relatively small ball and linear functionals are uniformly bounded in Lp for some p > 8, in a quantitative (non-asymptotic) fashion. Among the outcomes of this approach are optimal estimates of 1±c √ n/N ...

متن کامل

On structured singular values of reciprocal matrices

Computing the structured singular value (or ) is a bottleneck of the robustness analysis and synthesis of control systems. In this paper, it is shown that is identical to the maximum singular value for an important class of matrices called reciprocal, which re ects the intrinsic symmetry of physical world.

متن کامل

On singular values of partially prescribed matrices

In this paper we study singular values of a matrix whose one entry varies while all other entries are prescribed. In particular, we find the possible pth singular value of such a matrix, and we define explicitly the unknown entry such that the completed matrix has the minimal possible pth singular value. This in turn determines possible pth singular value of a matrix under rank one perturbation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Statistics

سال: 2023

ISSN: ['0090-5364', '2168-8966']

DOI: https://doi.org/10.1214/23-aos2263